Simply Statistics A statistics blog by Rafa Irizarry, Roger Peng, and Jeff Leek

The statistics department Moneyball opportunity

is a book and a movie about Billy Bean. It makes statisticians look awesome and I loved the movie. I loved it so much I’m putting the movie trailer right here:

The basic idea behind Moneyball was that the Oakland Athletics were able to build a very successful baseball team on a tight budget by valuing skills that many other teams undervalued. In baseball those skills were things like on-base percentage and slugging percentage. By correctly valuing these skills and their impact on a teams winning percentage, the A’s were able to build one of the most successful regular season teams on a minimal budget. This graph shows what an outlier they were, from a nice fivethirtyeight analysis.

 

oakland

 

I think that the data science/data analysis revolution that we have seen over the last decade has created a similar moneyball opportunity for statistics and biostatistics departments. Traditionally in these departments the highest value activities have been publishing a select number of important statistics journals (JASA, JRSS-B, Annals of Statistics, Biometrika, Biometrics and more recently journals like Biostatistics and Annals of Applied Statistics). But there are some hugely valuable ways to contribute to statistics/data science that don’t necessarily end with papers in those journals like:

  1. Creating good, well-documented, and widely used software
  2. Being primarily an excellent collaborator who brings in grant money and is a major contributor to science through statistics
  3. Publishing in top scientific journals rather than statistics journals
  4. Being a good scientific communicator who can attract talent
  5. Being a statistics educator who can build programs

Another thing that is undervalued is not having a Ph.D. in statistics or biostatistics. The fact that these skills are undervalued right now means that up and coming departments could identify and recruit talented people that might be missed by other departments and have a huge impact on the world. One tricky thing is that the rankings of department are based on the votes of people from other departments who may or may not value these same skills. Another tricky thing is that many industry data science positions put incredibly high value on these skills and so you might end up competing with them for people - a competition that will definitely drive up the market value of these data scientist/statisticians. But for the folks that want to stay in academia, now is a prime opportunity.