Sunday Data/Statistics Link Roundup (10/14/12)
14 Oct 2012
Share this on →
Twitter |
Facebook |
Google+
- A fascinating article about the debate on whether to regulate sugary beverages. One of the protagonists is David Allison, a statistical geneticist, among other things. It is fascinating to see the interplay of statistical analysis and public policy. Yet another example of how statistics/data will drive some of the most important policy decisions going forward.
- A related article is this one on the way risk is reported in the media. It is becoming more and more clear that to be an educated member of society now means that you absolutely have to have a basic understanding of the concepts of statistics. Both leaders and the general public are responsible for the danger that lies in misinterpreting/misleading with risk.
- A press release from the Census Bureau about how the choice of college major can have a major impact on career earnings. More data breaking the results down by employment characteristics and major are here and here. These data update some of the data we have talked about before in calculating expected salaries by major. (via Scott Z.)
- An interesting article about Recorded Future that describes how they are using social media data etc. to try to predict events that will happen. I think this isn’t an entirely crazy idea, but the thing that always strikes me about these sorts of project is how hard it is to measure success. It is highly unlikely you will ever exactly predict a future event, so how do you define how close you were? For instance, if you predicted an uprising in Egypt, but missed by a month, is that a good or a bad prediction?
- Seriously guys, this is getting embarrassing. An article appears in the New England Journal “finding” an association between chocolate consumption and Nobel prize winners. This is, of course, a horrible statistical analysis and unless it was a joke to publish it, it is irresponsible of the NEJM to publish. I’ll bet any student in Stat 101 could find the huge flaws with this analysis. If the editors of the major scientific journals want to continue publishing statistical papers, they should get serious about statistical editing.